A modular flow-chamber bioreactor concept as a tool for continuous 2D- and 3D-cell culture

نویسندگان

  • Christiane Goepfert
  • Grit Blume
  • Rebecca Faschian
  • Stefanie Meyer
  • Cedric Schirmer
  • Wiebke Müller-Wichards
  • Jörg Müller
  • Janine Fischer
  • Frank Feyerabend
  • Ralf Pörtner
چکیده

Background Advanced cell culture models, especially long-term 3D systems, require bioreactors allowing for cultivation under continuous flow conditions. Such culture models are for example tissue engineered implants, 3D cultures for drug testing, in vitro models of cell growth and migration for wound healing studies, cell cultures for biomaterial testing. New challenges in drug testing and biomaterial development arise from regulatory requirements. Animal trials have to be replaced by cell culture assays, preferably by test systems with human material. Standard 2D monolayer cultures are often unsatisfactory and therefore tissue-like 3D cultures are suggested as an alternative. Here the design of a multi-well flow-chamber bioreactor as a tool for manufacturing advanced cell culture models is presented. Advantages of this reactor concept can be seen in constant flow conditions, removal of toxic reaction products, high cell densities, and improved metabolism [1]. The general design of the flow chamber bioreactor (FCBR) can easily be modified for different applications and analytical requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Fuel Production from Synthesis Gas via Fermentation Process in a Continuous Tank Bioreactor (CSTBR) Using Clostridium ljungdahlii

The potential bioconversion of synthesis gas (syngas) to fuels and chemicals by microbial cell has attracted considerable attention in past decade. The feasibility of enhancing syngas bioconversion to ethanol and acetate using Clostridium ljungdahlii in a continuous tank bioreactor (CSTBR), kinetics and mass transfer coefficient of carbon monoxide (CO) utilization were evaluated. Two different ...

متن کامل

A modular microfluidic bioreactor with improved throughput for evaluation of polarized renal epithelial cells

Most current microfluidic cell culture systems are integrated single use devices. This can limit throughput and experimental design options, particularly for epithelial cells, which require significant time in culture to obtain a fully differentiated phenotype. In addition, epithelial cells require a porous growth substrate in order to fully polarize their distinct apical and basolateral membra...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

Induced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System

Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...

متن کامل

مهار مسیر TGF-b به‌وسیله تکنیک RNAi در سلول‌های بنیادی خون‌ساز کشت داده شده روی داربست سه بعدی DBM

Background: Bone Marrow Transplantations (BMT) are limited by low CD34+ cell counts in umbilical cord blood (UCB) and these cells need to be expanded for success in such procedures. To achieve this goal, ex vivo expansion of hematopoietic stem cells (HSCs) by enhancing their self-renewal activity on demineralized bone matrix (DBM) scaffold coated with mesenchymal progenitor cells (MPCs) and unr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013